Spectroscopic Surveys: Current Status and Technical Challenges

Kyle Dawson
University of Utah

October 5, 2015

Outline

- Cosmology from Spectra
 - Baryon acoustic oscillations (BAO)
 - Redshift Space Distortions (RSD)
 - Neutrino Masses
- Baryon Oscillation Spectroscopic Survey (BOSS: 2009 2014)
 - Establish BAO measurements with galaxies and lyman-alpha forest QSO
 - Develop measurements of redshift space distortions (RSD) with galaxies
- extended Baryon Oscillation Spectroscopic Survey (eBOSS: 2014 2020)
 - Refine BAO technique on luminous galaxies and lyman-alpha forest QSO
 - Establish BAO technique on emission line galaxies and quasars
 - Refine RSD techniques with galaxies
 - Establish RSD measurements with QSO
- Challenges
 - Target selection and systematics
 - Spectroscopic completeness
 - Scalability

Cosmology with Spectroscopic Surveys

- Galaxies trace the matter density field and the velocity field
- Spectroscopy allows tests of expansion history
- Baryon acoustic oscillations (BAO) → expansion history
- BAO has characteristic scale of ~100 h⁻¹ Mpc (comoving)

0.72 Gpc³, 46,748 luminous red galaxies over 3816 sq degrees (Eisenstein et al, 2005)

Cosmology with Spectroscopic Surveys

- Galaxies trace the matter density field and the velocity field
- Spectroscopy allows tests of growth of structure
- Redshift Space Distortions (RSD) → growth
- Characteristic feature embedded in velocity field

monopole and quadrupole of 690,826 BOSS galaxies at 0.43<z<0.7 (Samushia et al, 2014)

Cosmology with Spectroscopic Surveys

- Galaxies trace the matter density field and the velocity field
- Spectroscopy allows constraints on shape of matter power spectrum
- Sensitive to neutrino masses → suppression of power at small scales
- Sensitive to inflation → overall shape and higher order statistics

Red: Fourier space coverage of spectroscopic surveys

Blue: Lensing (Primarily CMB) Green: Photo-z density field

The Baryon Oscillation Spectroscopic Survey of SDSS-III Dawson, et al., 2013

BOSS First Light

SDSS-III Baryon Oscillation Spectroscopic Survey

D.W. Hogg and V. Bhardwaj for the BOSS team

BOSS Spectrographs

Smee et al., 2013

- Two 4k x 4k CCDs
- e2v CCD for optimized throughput at short wavelengths
- LBNL CCD for optimized throughput at long wavelengths

Characteristic Spectra from BOSS

- Galaxies classified automatically at 98.5% completeness
- Quasars classified via visual inspection, >400,000 spectra inspected

BAO in the 4yr BOSS Galaxy Sample Anderson, et al., 2014

- Distance measured in two galaxy samples
- 2% precision at z=0.32
- 1% precision at z=0.57

BAO in the 4yr BOSS Ly-alpha Forest Sample Delubac, et al., 2015

- Distance measured in d_A and H(z)
- $d_A = 1662 + /-96$ Mpc at z=2.34
- H(z) = 222+/-7 km/s/Mpc at z=2.34

RSD in the 4yr BOSS Galaxy Sample

- Sensitive to f σ_8
- Growth rate and amplitude of matter fluctuations
- Wide redshift range required to decouple growth from amplitude
- Test of general relativity (GR) on cosmological scales

The Extended Baryon Oscillation Spectroscopic Survey

Extended Baryon Oscillation Spectroscopic Survey Dawson, et al., 2015

- Entirely new target selections since BOSS
 - Enabled by new imaging since 2009
- Luminous Red Galaxies (LRG; 0.6<z<1.0; Prakash et al. 2015)
 - Selected from SDSS and WISE infrared satellite images
 - Higher redshift than BOSS galaxies, established methodology
- Emission Line Galaxies (ELG; 0.7<z<1.1; Comparat et al. 2015)
 - Likely DECam selection
 - Test plates in November, decide final selection by Feb 2016
- Quasars (0.9<z<2.2; Myers et al. 2015)
 - SDSS/WISE with proven sample
 - Will allow first BAO measurement directly from quasars
- Lyman alpha forest (z>2.1)
 - Enhance BOSS program with 60k new and 60k reobserved QSO
 - Improve analysis algorithms and spectral data reductions

Survey Overview

- BOSS+eBOSS Tracers (z>0.6)
 - 175,000 BOSS galaxies (red)
 - 265,000 new LRG (blue)
 - 195,000 new ELG (yellow)
 - 500,000 QSO tracers (black)
 - >200,000 ly-alpha QSO
- QSO+LRG (all filled regions): 7500 sq degrees total
- ELG (blue): 300 plates up to 1500 sq degrees
- ~300 plates completed as of today

Predicted BAO Constraints

Distance precisions 1-2% on all tracers

• LRG: 0.8%

• ELG: 2%

• QSO: 1.8%

• Lyman-alpha

• 1.4% on H(z)

• 1.7% on D_A(z)

Predicted RSD Constraints

- f σ_8 statistical precisions on galaxy and QSO
- LRG: 2.6%
- ELG: 3.8%
- QSO: 3.2%
- Challenge:
 Theoretical modeling

Predicted Neutrino and Inflation Constraints

- Statistical precision from all tracers
 - Planck +spectro
 - Assume flat LCDM
 - $\sigma(m_v) = 36 \text{ meV k} < 0.2$
 - Methodology introduced in BOSS, e.g. Beutler et al., 2014
- Inflation from Planck + eBOSS clustering
 - $\sigma(f_{nl})^{local}=12$ (power spectrum)
 - BOSS methodology, e.g. Ross et al., 2014
- Potential for improvement on f_{nl} with bispectrum
 - First tests in BOSS, e.g. Gil et al., 2014
- Challenge: Theoretical modeling

Challenges

- Fiber fed positioner depends on imaging for target selection
 - Convolves selection function across multiple surveys
 - Sensitive to calibration
- Galaxies at higher redshifts are faint and hard to classify
 - LRG ID-ed by absorption, need high S/N
 - ELG ID-ed by narrow emission, separate from sky residuals
- Detector technology well-developed but hard to increase by orders
 - Spectrographs are big
 - Fibers collide

Target Selection Systematics

- Variations in imaging conditions introduce structure into target selection
- Steepest relationship on zband imaging conditions for LRG
 - 8% of area varies by >15% due to variations in imaging conditions
- Steepest relationship on image depth for QSO selection
 - 10% of area varies by >15% due to variations in depth

Target Selection Systematics

- Variations in imaging conditions introduce structure into target selection
 - SGC and NGC feature different systematics
- Calibration of imaging data essential
 - 0.01 magnitude rms errors in zband zeropoint cause 6.2% density change

Spectroscopic Completeness

- Won't mention ELG spectra for now
- QSO → understand astrophysics to reduce systematics in redshift estimates
- LRG spectra are faint
 - Reduces classification efficiency relative to BOSS (30% failure if routines unchanged)
- Flux calibration is essential
 - Loss of information due to non-physical broad-band spectral features
 - Should improve with bench mount system

Spectroscopic Completeness

- LRG spectra are faint
 - Difficult to discriminate non-physical continuum from astrophysical signal
 - Sometimes low S/N as well

Statistical Limitations

- BOSS/eBOSS 3 orders magnitude smaller sample than LSST
 - Galaxy population not well-sampled
- DESI science reach still not statistically limited
 - Lack mixed bias tracers and modelling at small scales
 - Room to improve reconstruction of velocity field
- Statistics
 - More modes to explore
 - Mixed bias tracers → 3pt correlation for inflation
 - Mixed bias tracers → highly constrained models down to non-linear scales
- Degeneracy between modified gravity and neutrinos
 - 3X degradation in neutrino masses with Linder gamma parameterization
 - Worse degradation if invoking scale-dependent models of gravity

Spectrograph Challenges

- BOSS/eBOSS Spectrograph mounted to telescope
 - 1000 fibers at Cass
 - ~1.5M spectra
- DESI
 - 5000-fibers at prime
 - Benchmount of 10 spectrographs, each comparable to human height
 - ~35M spectra
- Bigger spectrograph on bigger telescope: large!
 - E.g. MUSE on VLT, 50 m³ for 100,000 traces
 - MUSE at Nasmyth focus, image slicer
 - 8-m telescope
- Difficult to scale to orders of magnitude bigger than DESI
 - How to scale to 100'sM spectra?

Summary

- BOSS done
 - sets stage for BAO/RSD
- eBOSS
 - One year into survey
 - New tracers
 - Understanding selection function
- DESI
 - See next talk
- Future
 - How to scale to larger spectrographs?